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Why should we study learning from directed
graphs?

• In typical machine learning approaches, e.g., kernel methods, the

pairwise relationships among data are assumed to be symmetric.

• However, in many real-world applications, the pairwise relationships

are asymmetric. A typical example is the World Wide Web.

• Transferring asymmetric relationships into symmetric ones leads to

loss of information (the directionality).

We analyze the asymmetric relationships directly without the need of

transferring.
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Learning from directed graphs: clustering
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Learning from directed graphs: classification
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Some notes

• Shi and Malik (1997) proposed the spectral clustering approach for

undirected graphs, which has a nice random walk interpretation

(Meilă and Shi, 2001).

• Kleinberg (1997) suggested to use the eigenvectors of W TW (W

denotes the adjacency matrix) for directed graph clustering in his

famous paper on the HITS algorithm.

• How to generalize the Shi and Malik’s algorithm to the context of

directed graphs has been listed as one of six algorithmic challenges

in web search engines (Henzinger 2003).
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Directed spectral clustering: cut criterion (I)

Our solution

• Defining a random walk over the directed graph G = (V, E) with a

transition probability matrix P such that it has a unique stationary

distribution π, such as the teleporting random walk used by Google

(note: any other random walk can be considered as well, for instance,

the two-step random walk).
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Directed spectral clustering: cut criterion (II)

• Looking for a cut V = S ∪ Sc (S ∩ Sc = ∅) such that, under

the stationary distribution, the probability of transition from one

cluster to another P (S → Sc) =
∑

u∈S,v∈Sc π(u)p(u, v) is as

small as possible, while the probabilities of remaining in the same

clusters P (S) =
∑

v∈S π(v), P (Sc) =
∑

v∈Sc π(v) are as large

as possible. Formally,

min
S 6=∅∈V

P (S → S
c
)

(
1

P (S)
+

1

P (Sc)

)
.
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Directed spectral clustering: real-valued
relaxation

• The combinatorial optimization can be relaxed into

argmin
f∈R|V |

Ω(f) =
1

2

∑
[u,v]∈E

π(u)p(u, v)

(
f(u)√
π(u)

−
f(v)√
π(v)

)2

subject to ‖f‖ = 1, 〈f,
√

π〉 = 0.

• Define Θ = (Π1/2PΠ−1/2 + Π−1/2P TΠ1/2)/2 and ∆ = I −Θ.

We can show that Ω(f) = 〈f, ∆f〉.
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Summarizing our directed spectral clustering
algorithm

It can be implemented with only several lines of Matlab code.

1. Define a random walk over graph G = (V, E) with a transition

probability matrix P such that it has a unique stationary distribution.

2. Let Π denote the diagonal matrix with its diagonal elements being

the stationary distribution of the random walk. Form the matrix

Θ = (Π1/2PΠ−1/2 + Π−1/2P TΠ1/2)/2.

3. Compute the eigenvector Φ of Θ corresponding to the second largest

eigenvalue, and then partition the vertex set V of G into S = {v ∈
V |Φ(v) ≥ 0} and Sc = {v ∈ V |Φ(v) < 0}.
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Transductive inference (semi-supervised
learning)

It is straightforward from spectral clustering to transductive inference.

• Given a directed graph G = (V, E), some vertices are labeled.

Define a function y on V with y(v) = 1 or −1 if vertex v is labeled

as 1 or −1, and 0 if v is unlabeled. Then the remaining unlabeled

vertices may be classified by using the function

f
∗
= argmin

f∈R|V |

{
Ω(f) + µ‖f − y‖2

}
=⇒ f

∗
= µ(µI + ∆)

−1
y.
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Discrete analysis and regularization (I)

We develop discrete analysis for directed graphs to construct a discrete

analogue of classical regularization theory.

• Given a directed graph G = (V, E), the functions defined on V can

be endowed with the standard inner product in R|V | as

〈f, g〉H(V ) =
∑
v∈V

f(v)g(v)

to form a space denoted by H(V ). Similarly define H(E).
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Discrete analysis and regularization (II)

• We define the graph gradient to be an operator∇ : H(V ) → H(E)

which satisfies

(∇f)([u, v]) :=
√

π(u)p(u, v)

(
f(v)√
π(v)

−
f(u)√
π(u)

)
.

• We define the graph divergence to be an operator div : H(E) →
H(V ) which satisfies

〈∇f, g〉H(E) = 〈f,− div g〉H(V ) .
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Discrete analysis and regularization (III)

• We define the (directed) graph Laplacian to be an operator ∆ :

H(V ) → H(V ) which satisfies

∆f := −
1

2
div(∇f).

It can be shown that ∆ = I −Θ (with Θ as defined earlier).

• We define a general operator ∆p : H(V ) → H(V ) which satisfies

∆pf := −
1

2
div(‖∇f‖p−2∇f).

Clearly, ∆2 = ∆, and ∆p(p 6= 2) is nonlinear.
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Discrete analysis and regularization (IV)

We can show that the solution f∗ of the general optimization problem

argmin
f∈H(V )

{
1

2

∑
v∈V

‖∇vf‖p
+ µ‖f − y‖2

}

satisfies

p∆pf
∗
+ 2µ(f

∗ − y) = 0.

(Note that the previous optimization problem is the case of p = 2.)
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Conclusion

A solid mathematical framework for the web IR

• Generalized the spectral clustering approach to the context of di-

rected graphs;

• Proposed a transductive inference algorithm for directed graphs built

on the directed spectral clustering approach;

• Developed discrete analysis for directed graphs and consequently a

discrete analogue of classical regularization theory.
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