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Why should we study learning from directed
graphs?

e In typical machine learning approaches, e.g., kernel methods, the
pairwise relationships among data are assumed to be symmetric.

e However, in many real-world applications, the pairwise relationships
are asymmetric. A typical example is the World Wide Web.

e Transferring asymmetric relationships into symmetric ones leads to
loss of information (the directionality).

We analyze the asymmetric relationships directly without the need of
transferring.



Learning from directed graphs: clustering




Learning from directed graphs: classification




Some notes

e Shi and Malik (1997) proposed the spectral clustering approach for
undirected graphs, which has a nice random walk interpretation
(Meild and Shi, 2001).

e Kleinberg (1997) suggested to use the eigenvectors of W' W (W
denotes the adjacency matrix) for directed graph clustering in his
famous paper on the HITS algorithm.

e How to generalize the Shi and Malik's algorithm to the context of
directed graphs has been listed as one of six algorithmic challenges
in web search engines (Henzinger 2003).



Directed spectral clustering: cut criterion ()

Our solution

e Defining a random walk over the directed graph G = (V, E) with a
transition probability matrix P such that it has a unique stationary
distribution 7, such as the teleporting random walk used by Google
(note: any other random walk can be considered as well, for instance,
the two-step random walk).



Directed spectral clustering: cut criterion (11)

e Looking for a cut V.= S U S° (SN S° = 0) such that, under
the stationary distribution, the probability of transition from one
cluster to another P(S — S%) = > g cgqe m(u)p(u,v) is as
small as possible, while the probabilities of remaining in the same
clusters P(S) =) ,com(v), P(S°) =) cgem(v) are as large
as possible. Formally,

. (1 1
Jain P(S = 57 (P(S) T P(SC)) |



Directed spectral clustering: real-valued
relaxation

e The combinatorial optimization can be relaxed into

| 1 ONERIORY
argmin 2 = — m(uw)p(u, v - —
Rl =3 [u;eE o )<Wr(u) WT(U))

subject to | £]] = 1, (f,v/7) = 0.

o Define © = (II'2PII Y2 + I V2PTIIY?) /2 and A = T — O.
We can show that Q(f) = (f, Af).



Summarizing our directed spectral clustering

algorithm

It can be implemented with only several lines of Matlab code.

1.

Define a random walk over graph G = (V, E) with a transition
probability matrix P such that it has a unique stationary distribution.

Let IT denote the diagonal matrix with its diagonal elements being
the stationary distribution of the random walk. Form the matrix
@ — (H1/2PH_1/2 _|_ H—l/QPT]:[l/Z)/2.

Compute the eigenvector & of © corresponding to the second largest

eigenvalue, and then partition the vertex set V of G into S = {v &€
V|®(v) > 0} and S = {v € V|P(v) < 0}.



Transductive inference (semi-supervised
learning)
It is straightforward from spectral clustering to transductive inference.

e Given a directed graph G = (V, E), some vertices are labeled.
Define a function y on V with y(v) = 1 or —1 if vertex v is labeled
as 1 or —1, and O if v is unlabeled. Then the remaining unlabeled

vertices may be classified by using the function

1 = argmin { Q(f) + pllf - ylI*}

FerlVl

— [ =p(pl +8)y.
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Discrete analysis and regularization (I)

We develop discrete analysis for directed graphs to construct a discrete
analogue of classical regularization theory.

e Given a directed graph G = (V, E), the functions defined on V" can
be endowed with the standard inner product in RV as

(f, 9)nevy =Y, F(v)g(v)

veV

to form a space denoted by H(V'). Similarly define H(E).
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Discrete analysis and regularization (I1)

e \We define the graph gradient to be an operator V : H(V') — H(E)
which satisfies

(V£ ([, ]) = ¢w<u>p<u,v>< o) W) )

V) /(W)

e We define the graph divergence to be an operator div : H(E) —
H (V') which satisfies

(Vf, g}H(E) = (f, —div g>H(V) .
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Discrete analysis and regularization (l11)

e We define the (directed) graph Laplacian to be an operator A :
H(V) — H(V) which satisfies

L.
Af = —adlv(Vf).

It can be shown that A = I — O (with © as defined earlier).
e We define a general operator A, : H(V') — H(V') which satisfies

1
Apf = =S div([VFI"V ).

Clearly, Ay = A, and A,(p # 2) is nonlinear.
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Discrete analysis and regularization (1V)

We can show that the solution f™* of the general optimization problem

. 1
argmm{52 IV A1+l £ - yl!2}

fem(v) veV

satisfies
PALfT +2u(f" —y) = 0.

(Note that the previous optimization problem is the case of p = 2.)
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Conclusion

A solid mathematical framework for the web IR

e Generalized the spectral clustering approach to the context of di-
rected graphs;

e Proposed a transductive inference algorithm for directed graphs built
on the directed spectral clustering approach;

e Developed discrete analysis for directed graphs and consequently a
discrete analogue of classical regularization theory.
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